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INDIVIDUAL GEOPOTENTIAL COEFFICIENTS OF ORDER 15 AND 30,
FROM RESONANT SATELLITE ORBITS

by
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Z SUMMARY
—> The analysis of variations in satellite orbits when they pass through
15th-order resonance (15 revolutions per day) yields values of lumped geo-
potential harmonics of order 15, and sometimes of order 30. The l15th-order
lumped harmonics obtained from 24 such analyses over a wide range of orbital
inclinations are used here to determine individual harmonic coefficients of
order 15 and degree 15, 16,...35; and the 30th-order lumped harmonics (from
eight of the analyses) are used to evaluate individual coefficjients of order
30 and degree 30, 32,...40. The new values should be more accurate than any
previously obtained. The accuracy of the 15th-order coefficients of

degree 15, 16,...23 is equivalent to 1 cm in geoid height, while the 30th-
order coefficients of degree 30, 32 and 34 are determined with an accuracy
which is equivalent to better than 2 cm in geoid height. The results are
used to assess the accuracy of the Goddard Earth Model 10B, :
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1 INTRODUCTION

Three years ago we obtainedl values of individual I5th-order coefficients in the
geopotential up to degree 35, from lumped harmonics of order 15 derived by amalysis of
23 satellite orbits that passed through 15th-order resonance with the Earth's gravity
field. These orbits covered a wide range of inclinations to the equator, but there were
no accurate orbits at inclinations between 59° and 74°, The recent orbit analysis2 of
a satellite at 65.8° inclination (1971-10B) should make possible a better evaluation of

individual 15th-order coefficients.

Analysis of a satellite orbit that passes slowly through }5th-order resonance also
often yields values for lumped harmonics of 30th order, and previously there were results
from orbits at enough different inclinations to obtain a preliminary solution3 for
individual coefficients of 30th order. However, there were no results from orbits at
inclinations between 59° and 74°, This gap has again been filled by the results from
1971-10B, and greatly improved solutions for individual 30th-order coefficients should
emerge.

2 BACKGROUND

The gravitational potential of the Earth is usually expressed as a double infinite
series of tesseral harmonics depending on latitude and longitude. The order m of the
harmonics expresses the variation with longitude, and a harmonic of order m has m
sinusoidal oscillations over 360° of longitude. The degree 2 of the harmonic (where

£ ® m) governs variations with latitude, which are more complexa.

If the orbital period of a satellite is such that its successive ground tracks over
the Earth are 360°/m apart, so that the track repeats after m revolutions, the satellite
exhibits mth-order resonance and the perturbations due to harmonics of order m build up
day after day to produce quite a large change in some of the orbital elements. This
change can be analysed to determine a lumped harmonic of order m , that is a linear sum
of individual harmonics of order m and degree zo, zo + 2, zo + 4, ..., where 20 = m
or m+ | (depending on the orbital element being analysed, and whether m 1is odd or
even). By obtaining values of lumped harmonics for many resonant satellites at different

inclinations to the equator, it is possible to solve for the individual harmonic
coefficients,

A satellite experiencing !5th-order resonance usually has an average height near
500 km - the exact value depends on the inclination, being 470 km for an equatorial orbit
and 560 km for a polar orbit. At these heights the effects of atmospheric drag are
appreciable: so the contraction of the orbit under the influence of air drag brings it to
resonance and slowly draws it through resonance. The lower the drag, the longer the

resonance acts, and the better the orbit is for analysis,

The theory of the resonance has been given in Ref | and elgewhere, and will not be

repeated here; but the notation is outlined in section 3.




~

3 NOTATION

The longitude-dependent part of the geopotential at an exterior point (r,3,1) is

. . . 5
written in normalized form™ as

2
l:_- Z Z(%)E P: (cos 6){E£m cos mA + §2.m sin mA}NZm , (1)

L=2 mm]

where r is the distance from the Earth's centre, 06 1is co~latitude, A is longitude
(positive to the east), u is the gravitational constant for the Earth (398600 km3/s2)
and R is the Earth's equatorial radius (6378.!1 km). The P?(cos 8) are the associated
Cegendre functions of order m and degree 2 , and sz and szm are the normalized
tegsseral harmonic coefficients: only those of order m = 15 and m = 30 are relevant here.

The normalizing factor sz is given bys

2 _ 222+ D@ = m!

N T s o7 .

(2)

Resonance is defined by means of the resonance angle ¢ , given for |5th-order
resonance by
¢ = w+ M+ I5(Q=-v) , (3)

where w is the argument of perigee, M the mean anomaly,  the right ascension of

the node and v the sidereal angle. Exact resonance occurs when
= @+ M+ 15(Q - 360.987) deg/day (4)

is zero, and, in practice, perturbations due to resonance are usually appreciable if
%] <10 deg/day.
The rate of change of inclination 1 caused by a relevant pair of geopotential

coefficients, Clm and slm , near a resonance may be written6

di n R A=me] =

z- » l- 3
- ?i-r-l—i.(z) Fs?.mpclpq(k cos i - m)ﬁ[_] (cﬂ.m - Jszm) exph(y@ - qm)}] , (5)

where n =M, a is the same major axis, Fzmp is Allan’'s normalized inclination

function6, Gqu is a function of eccentricity e , ® denotes 'real part of' and
ji= v=1 . The indices v, q, k and p in equation (5) are integers, with y taking
the values !, 2, 3,... and q the values O, *I, #2, ,,.. For I5th~order resonance, the

equations between £, m, k and p are: m= 15y; k =y ~q; 2p = £ - k.

The largest terms in equation (5) are nearly always those with y = |, but the vy = 2
terms are sometimes important too. With y = | and vy = 2, the values of m that arise
are m = |5 and m = 30 respectively. For given m , the values of £ that arise are
those for which (¢ - k) is even; also, of course, % 2 m , Thus, if the minimum possible
value of 2 1is denoted by lo » where lo is either m or (m + 1), the values of ¢

that arise are zo, lo + 2, lo + 4, .o. « It is convenient to group these successive
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relevant coefficients in the form of a 'lumped harmonic', written as

q,k q,k
I = q’k- g = q,k-
a Z %Y Com S Z %Y Sm (6)
L A
where the Qz’k are functions of i that can be taken constant for a particular

satellite, Qg’k =] when 24 = zo , and the summation is for values of ¢ from Zo

upwards in steps of 2,

For 15th~order resonance, the rate of change of i may be expressed in terms of

the lumped coefficients as7

. 15 0,1 0,1
di n R = =" . ="
It ;TE-T'(:) (15 = cos 1)[%,5’15’73015 sin ¢ ~ SlS cos of
Rls_ 0,2 ) _0,2
. 2(;) F10.30,14]C30 %in 20 = S5y cos 20

(lahyr i

lql
+ terms in (te) = c°:(Y¢ ~ quw) ’ (N

where only the terms in (y,q) = (1,0) and (2,0) are given explicitly, although it is
often necessary to take account also of the (y,q) = (1,1) and (1,-1) terms (unless the

eccentricity is very small).

The rate of change of eccentricity at 15th~order resonance, produced mainly by the
. , 1
terms with (y,q) = (1,1) and (1,-1), may be written :

16 1,0 1,0
de n - - ¥ . - - ? -
It f(%) - |7F16,IS,83515 sin(d - w) + Cls cos (% w)}
- ~1,2 _-1,2
+ 13F16,15,7$sl5 sin(® + w) + C]S cos(¢ + m)s .

lal_lq[-!
+ terms in [ﬁi&i..Ji____. {q - bk + q)ez} €8 (ve - qu) . (8)

(lal)! sin

Thus analysis of the variation in inclination usually gives values of lumped
harmonics with (q,k) = (0,1) and (0,2), while analysis of the variation in eccentricity

gives values of lumped harmonics with (q,k) = (1,0) and (-1,2).
4 PROCEDURE

The methods of analysis have been explained previouslyl. In summary, the observa-
tional values of inclination are cleared of irrelevant perturbations and fitted using
the computer program THROEa with an integrated form of the theoretical equation (7), with
extra terms when appropriate, to determine values of the lumped coefficients. Similarly
the observational values of eccentricity, cleared of perturbations, are fitted with an
integrated form of equation (8), with extra terms as necessary. With a few satellites it
is useful to make a simultaneous fitting of inclination and eccentricity using the SIMRES

progran,




. Each fitting yields values of one or more pairs of lumped harmonics, and each
lumped harmonic specifies one linear equation between the individual harmonics of odd
degree (or those of even degree). If such equations are available from fittings of
orbits over a wide range of inclinations, the equations can be solved for individual
harmonic coefficients. In practice the effects usually decrease quite rapidly as the
degree of the harmonics increases, and the truncation of the solutions at a particular
degree is probably not a limiting factor on the accuracy, although it is a matter that

calls for careful judgement,

Previously£ we used results from 23 orbit analyses to determine individual 15th-
order coefficients of degree up to 35, For 30th order3, we offered a tentative solution
for individual coefficients of degree 30, 32, ...40, from 7 orbit analyses. The additLioun
of 1971108 now gives us 24 orbits for determining individual 15th-order coefficients
and 8 for 30th-order. Most of the existing analyses are accepted unchanged, but four

have been revised. The new and improved analyses are discussed in section 3.

5 NEW OR REVISED VALUES

5.1 1971-10B, Cosmos 394 rocket

The main new results are for the satellite 1971-10B at inclination 65.80, for which
52 orbits covering the time of |5th—order resonance were determined and analysed by
Uhlkerz. Values were obtained for six I5th-order lumped coefficients and two 30th-order

lumped coefficients, as follows:

5051 g-0s1 ]
10 C'5 = = 0,7 % 4,1 10 SIS = 2.4 £ 3.9
9=110 9=110
10°¢C = 35.1 £ 11,7 10°s = - 13,8+ 11,0
15 15
(9)
9_-1,2 9_-1,2
10 CIS = - 20.0 £ 10,7 10 S]5 = - 18,9 ¢+ 10.3
9042 92012
10 C30 = = 54 ¢+ 27 10 530 = 59 + 40 )

The first pair of coefficients may seen to be ill-defined, but in fact the standard
deviations are small: it so happens that both coefficients are very small at this
imclination, Apart from the first pair of coefficients, which have standard deviations
similar to those for 1970-87A, these values are much more accurate than any previously
determined for a satellite with inclination between 59° and 7&0, and they have a major

effect on the accuracy and reliability of the final solutions.

5.2 1970-87A, Cosmos 373

For this satellite, at inclination 62.90, there were only 24 orbits, all at dates
after resonance, Previously], we used a fitting which omitted the last of the 24 points.
After further examination, we decided that the omission of the last point was not really
Justified, and we have returned to the fitting with all 24 points. Also the atmospheric
fotation rate was altered from A = 0.8 to A = 0.9 rev/day, in conformity with Ref 9. The

mew values for the lumped coefficients are:

1700Q
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~4

0,1
Cis

_0,1

9
515

10 9

= < 5,4+ 3,6 10 = - 31,428 ., (10)
The previous values were -5.3 and -32,8 respectively, with slightly lower standard devi-
ations through the omission of the last point. In the solutions it was found necessary

to increase the standard deviation of the S coefficient by a factor of 4.

5.3 1977-12B, Tansei 3 rocket

This satellite, at inclination 65.50, was of rather high drag and cannot be expected
to give accurate values. Our previous results, based on analysis of US Navy orbits, were
not very good and were included only because of the dearth of data from inclinations near
65°. Subsequently Moore10 has determined orbits from Hewitt camera, kinetheodolite,

visual and radar observations, and has re~analysed the change in inclination to obtain

0,1

_0,1
g 9
15

a 13.4 6,2 10 sIS = 0,7 = 13,3 ., (n

109

. b,
We have used these instead of the previous values: however, as before , it was necessary

to double the standard deviation of the C coefficient.

5.4 1971-54A, SESP-|

The satellite 1971-54A, at inclination 90.20, suffered significant perturbations due
to 15th-order resonance for more than 5 years, and analysis of 269 orbits, between
November 1972 and January 1978, yielded excellent values7 of lumped harmonics of order 15
and 30, '

In this analysis, however, the perturbations due to earth tides were ignored, and
Dr Philip Moore of the University of Aston has pointed out that the inclination could be
significantly affected by such perturbations, because they are also near-resonant. The
earth~tide perturbation, calculated using the equations and models adopted by Moore and
Holland]l, is shown in Fig 1, The variation may be approximated as a linear increase,
with maximum error 0.0005°, which is less than the errors in the observational values of
inclination. This linear increase is at a rate of (5.6 £ 1.!) x IO.'6 deg/day, where an
error of 20% has been assigned to cover the neglect of ocean tides and uncertainty in

the Love number.

The previous analysis of 1971-54A was made using the THROE computer program and
assuming that the variation in inclination, after removal of known perturbations, was due
only to resonance, To discover whether the earth-tide perturbation was significant, the
analysis was repeated with a linear term included., As a result of this change, the
measure of fit ¢ was reduced from 0.52 to 0,48, and the value determined for the linear
term gave a rate of change of inclination of (4.5 * 0,5) «x 10-6 deg/day, which agrees
with the pre-calculated value, (5.6 £ 1.1) x lO-6 deg/day. The new fitting is, therefore,
to be preferred.

The values for the lumped harmonics which emerge from the new fitting are as
follows:




0,1 9051

1096|5 = - 16,05 £ 0.21 1075 - 6.90 * 0.21
3052 50,2 (12)
10 Cip = -~ 9.81 + 0,58 10 Sip = 9.00 £ 0.75
0,1
Although Cls is little changed from its previous value (=16.40 + 0,24), thgrs is a
considerable change in §l; (previously =5,37 £ 0.15). The new values of 636 and

0,2 :
336 differ from the previous values (~8.2 and 11.1) by about 1.3 times the sum of the

standard deviations.

5.5 1966-63A, OV1-8

The previous results for this satellite, at inclination 144;20, have now been
superseded by an improved analysislz, in which 32 orbits were determined from observations

and the effects of solar radiation pressure were taken into account. The new values,

9-0s1

10 CIs = 36900 £ 9700 10 SlS = 12200 + 4700 , (13)

have much lower standard deviations than the previous values, and also fit the solutions

much better.

6 THE |STH-ORDER EQUATIONS

6.1 Odd degree

Each of the 24 satellites gives values for lumped harmonics of odd degree, so that

in the notation of equation (6) we have 24 equations of the form

0.0 0,1= 0,1=
= ] * 7,
s Cis,is * Q7 %7,15 * Qg Cig,u5 ¥ 0- o (14)
_0,1 _0,1
with similar equations for the § coefficients. The values of C]5 and SIS for the
24 satellites are listed in Table I, with the values of a, e, i and F The

15,15,7 °
values of the Q coefficients up to degree 41, calculated with the RAE computer program

PROF, appear in Table 2 (on page 22).

Following the method that proved successful beforel, we also add constraint equations

of the form

= -5,.2

Cz,IS 010 7/ (15
with similar equations for S , for 2 = 15, 17, 19, ... up to the highest % evaluated.
These equations express the expectations that the order of magnitude of the individual
coefficients of degree ¢ is 10-5/22, for 15« 2 <40, as is confirmed in a general
way by the Goddard Earth Model 10C (Ref 13),

Thus in solving for N odd-degree harmonics, we have 24 + N equations for C ,
and another 24 + N equations for S .

6.2 Even degree

Lumped harmonics of even degree are obtained from 17 of the 24 satellites, so that

wa have 17 equations of the form

12078
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10 1,02 1,0=
- n >
Cis = Cig,15 * Qg Ci8,05 * Qo Canus e (16)
and another 17 of the form

E-I’z - C + Q7% + o102 +
I5 16,15 * Qg Ci8,15 * Qo C0,15 * e-

Thus there are 34 equations for even-degree C coefficients, and another 34 for the

a7

S coefficients. With the constraint equations (15), we have (34 + N) equations when

-1

solving for N even-de?rge harmonicsé The 17 pairs of values of Cl; , and §|; .
- -1

and the 17 pairs of CIS’ and Sls’ , are given in Table 3, with the corresponding

F factors. The Q coefficients up to degree 42 are given in Tables 4 and 5 (pages 23
and 24).

7 SOLUTIONS FOR INDIVIDUAL HARMONIC COEFFICIENTS OF 15TH ORDER

7.1 Method

The method of solution is described in Ref I. Basically it is a least-squares
solution with the option of relaxing the standard deviations of ill-fitting points when

necessary, to keep the weighted residuals below a chosen level, usually about 1.4.

7.2 0dd-degree harmonics (% = 15,17,19...)

When the 24 equations (14) and N constraint equations (15) were solved for

B coefficients, with 7 SN < |] , the measure of fit ¢ took the following values:

N 7 8 9 10 11

C equations | 3.53 1,92 | 0.99 | 0.97 | 0.85
S equations 1,20 { 1,14 | 1,12 | 0.84 | 0.83

4s usual, €2 i3 the sum of squares of weighted residuals divided by the number of
degrees of freedom, and the weighted residual is the residual for each lumped coefficient

divided by the standard deviation for that coefficient as given in Table I.

At least 10 harmonics = up to & = 33 - are needed because the Q values are large
for the low-inclination --+ellites, as Table 2 shows. Increasing N from 10 to Il
teduces € by 127 for the C equations, though only marginally for the S equations.
Increases of N beyond 1l reduce ¢ by only IZ or less. So the ll-harmonic solution

has been chosen as the most satisfactory.

The values of the odd-degree C and S coefficients given by the ll-harmonic
solution are listed in Table 6. The standard deviations are on average 117 lower than in
our previous solution]. This is a substantial improvement, in view of the fact that only
one new satellite was added to the existing 23, and only four of the others were revised,
mostly in a minor manner, The mean difference between the new values and the old is
1.2 x (the sum of the standard deviations), so the new solution is significantly different
from the old. For example, 1093

.7-A to ‘6. 5.

changes from =-22.7 to -20,7, and l09§ from

15,15 15,15

12078
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Table 6

Values of odd-degree EQ s and §l s given by
it ] 2
the 1l-harmonic solution
9= 9=
L 10 CE,IS 10 SZ,IS
15 =20,.7 £ 0.5 -6.5 £ 0.4
17 7.3 + 0.8 2.4 0,7
19 -16.2 £ 0.7 -13.7 £ 0.6
21 17.9 £ 0.6 10.8 £+ 0.9
23 20,6 ¢+ 1.3 2.0 £ 1.3
25 -6.0 £ 1.8 Tl £ 2,1
27 4,6 + 1.3 9.8 + 2,4
29 -6,9 £ 1.4 -4,0 £ 1,4
31 18.4 + 2.4 =4,9 £ 3,4
33 -1,1 £ 2.8 -12.4 + 3,6
35 -10.5 ¢ 4.0 4.2 + 4,4
The weighted residuals in the 24 satellite equations and the |l constraint

equations are given in Table 7. The weighted residuals are expressed relative to the
standard deviations given in Table 1, some of which include factors of increase, as
indicated by the footnotes. These factors, either 2 or 4, were chosen to keep all the

weighted residuals for the individual satellites less than 1.4,

Table 7

Weighted residuals in the 35 equations for odd-degree harmonics,
from the-ll-harmonic solution

Satellite equations Constraint equations
. =0,1 0,1 = =

Satellite ClS 315 2 ci,lS 52,15

65-09A 0.08 0.31 15 0.47 0.15

69-68B 0.25 0.27 17 -0.21 -0.07

64-844 -0.19 -0,83 19 0.59 0.49

79-82A -0.01 0.34 21 -0.79 -0.48

71=30B ~-0.88 -0.99 23 -1,09 -0,11

74=34A 0.24 -0.15 25 0.37 -0.07

71-58B 0.85 0.86 27 0.34 -0.71

62-15A -0.80 0.30 29 0.58 0.33

65-53B -0.24 -1,15 31 -1,77 0.47

63=-24B 0.96 0.27 33 0.13 1.35
* 70-87A -0.64 -1.34 35 1.28 -0.52

77-12B 1.18 0.05

71-106A -0.82 0.47

71-10B 0.33 0.18

71-18B -0.90 0.61

70-111A -0,58 0.19

71-138 0.67 -0.53

77-95B 0.91 1.05

67-424A -0.10 -0.37

70-19A 0.02 1.22

67-73A 0.13 0.09

71=54A =0.01 -0.01

64-52B -0.19 1,17

66=63A -1.17 -1,39

12098
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The weighted residuals for the individual harmonic coefficients, which are of
course relative to the arbitrary standard deviation, 10-5/12, have an average value of
0.55; so the constraint seems to be at about the right level. By relaxing the constraint
to, say, 2 x IO-S/QZ, a nominally more accurate solution can be obtained, but with
greater danger of oscillatory excursions in the values. The numerical values of the
1 5th-order harmonics of degree 15-35, as given in Table 6 (and Table 8), are plotted in
Fig 2, where the values of :10-5/22 are also indicated. Fig 2 seems to confirm that the

constraint is reasonable,
- _1,0 _ _1,0
The values of F15,|5,7c15 and F|5’15,7S|5 from Table | are plotted against

inclination in Fig 3, and the variation given by the ll-harmonic solution is shown by
the unbroken lines. The fitting of the points seems to be excellent = it is faithful

and has no unlikely-looking oscillations.

7.3 Even-degree harmonics (2 = 16,18,20,...)

When the 34 equations of the form (16) or (17) and the N constraint equations

were solved for N coefficients, for 6 S N € 10, the measure of fit ¢ took the

following values:

N 6 7 8 9 10

C equations | 1.67 | 1,09 | 1,09 | 1,04 | 0.99
S equations | 2.03 | 1,04 | 0.93{ 0.92 | 0.90

Increasing N from 9 to 10 significantly reduces ¢ for both C and S equations,
but there was no appreciable improvement in going beyond N = 10, So the l0~-harmonic

solution was chosen, because
(a) it is probably the best, on the basis of € , and
(b) it fits in with the Il-harmonic solution for coefficients of odd degree.

The values of C and S coefficients given by the 10-harmonic solution are listed
in Table 8, The only change from the previous solution was the addition of 1971=10B:
the standard deviations are on average 5% lower than in the previous solution and the
values of the coefficients are very similar,
Table 8 .

Values of even=degree cz,lS and SE,IS

§iven by the l10-harmonic solution

9= 9

2 10 Cz,ls 10 sz,ls

16 -12,1 £ 2,3 | =21,7 £ 1,5
18 =42.4 £ 1,7 | =22,3 ¢+ 1.1
20 «23,5 ¢ 2,0 -6,0 £ 1.5
22 23,9 + 2.0 10,2 £+ 1,6
24 0.4 £ 3.6 | =22,1 + 3,2
26 -14,3 £ 5,5 14,3 £ 5.3
28 -15,2 £ 6.3 -8,4 £ 6.3
30 -3,1 £ 6,7 | =15.71¢% 6,2
12 9,2 &+ 5.9 1,0 + S.0




ilie pattern or residuals is almost the same as before, so no Table is given. The
weighted residuals for 1971-10B, expressed relative to the standard deviations giveg in

-l --l _l 0 -
Table 3, are -1.26 for C,. , 0.08 for cls’ , 1.06 for § ' and 0.39 for 3§

-1,2
15 15 :
None of the weighted residuals in the 34 satellite equations exceeded 1.4, relative to

the standard deviations of Table 3.
- -lyo - -"lvz . . > . .
The values of Fl6,l$,8ClS and Fl6,|5,7C15 are plotted against inclination in
Fig 4; and Fig 5 is a similar diagram for the S coefficients. The variations given by

the 10~-harmonic solution are shown by the unbroken lines in Figs 4 Tnd 5. The only
]
15
Fig 4, which is higher than might be expected. This arises because the fittings of

peculiarity that strikes the eye in Figs 4 and 5 is the peak in FC near i = 63° in

equations (16) and (17) are simultaneous and the Q coefficients for ET%’Z at i > 58°
1,0 1,2
15 o 5

pulled upwards by the observational point at i = 58,27, there is a corresponding peak

in ?C:go near 64°.

curve is

are similar to the Q coefficients for C at i = 64°: since the fET

Although the 10-harmonic solution is needed to match the !i-harmonic solution of
Table 6, it is obvious that the higher-degree coefficients in Table 8 are poorly deter-
mined. So it would be useful to have a solution with a smaller number of coefficients
and lower standard deviations. But it is found that none of the other solutions (N = 6, 7,
8 or 9) fulfils these requirements. The standard deviations are only very slightly
smaller, and it seems that the advantage of having smaller numbers of coefficients is
balanced by the errors due to neglecting the fairly large high-degree harmonics. If
a smaller number of coefficients, n , is required, the best plan seems to be.to take the
first n coefficieats in Table 8. )

8 COMPARISON OF |S5TH-ORDER COEFFICIENTS WITH THOSE OF COMPREHENSIVE GEOPOTENTIAL
MODELS

The comparisons of gravity models made by Klokoénik and Pospféilovsl4 suggest that

only the recent models are sufficiently reliable for a useful comparison with our new

values. However, several recent geopotential models, such as Rapp's 1981 modell5 and
the European GRIM 3]6, have utilized our previous values of l5th-order harmonics, so
that comparisons are fruitless. One recent model which is believed to be independent of
our results is the Goddard Earth Model 10B 13, and our values are compared with GEM 10B

up to degree 23 in Table 9.

The object of this comparison is to assess the accuracy of GEM 10B on the assump-
tions (a) that our standard deviations are realistic and (b) that GEM 10B is less accurate
than our values. The mean numerical difference between the 18 GEM values in Table 9 and
the corresponding values in our solutions is 3.6 x 10-9. This crude but effective method

of comparison suggests that the accuracy of the GEM-10B values is about 3 or 4 x l0-9.

17098

The mean standard deviation of our values is 1.2 x 10-9, sufficiently smaller to justify

the direct comparison.

For the coefficients of degree 24-35, listed in Table 10, the mean difference

between the 24 GEM values and the corresponding values in our solution is 8.1 x 10-9.

9

Since eight of our values have standard deviations greater than 5 x 10” , this comparison
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Table 9

Comparison of our values with GEM 10B
up to degree 23

9= 9=
. 10°C, 15 1075, 15
GEM 10B | Tables 6 and 8 | GEM 10B | Tables 6 and 8

15 -19.7 -20.7 £ 0.5 -6.4 -6.5 £ 0.4
16 -14.4 -12,1 £ 2,3 -27.8 -21.7 £ 1,5
17 2.5 7.3 £ 0,8 4.8 2.4 £ 0,7
18 -48.3 =424 £ 1.7 -18.6 =22.3 £ 1,1
19 =20.6 -16.2 * 0.7 -15.3 -13,7 £ 0.6
20 -23.9 -23,5 £ 2.0 4.8 -6.0 £ 1,5
21 16,2 17.9 £ 0.6 9.5 10.8 * 0.9
22 24,1 23,9 £ 2,0 -1.3 10,2 £ 1.6
23 15.4 20,6 £ 1.3 4.1 2,0 £ 1,3

may not give a fair impression., If we exclude these eight values, the mean difference
between the 16 remaining GEM values and the corresponding values in our solution is

7.0 x 10-9, while the mean standard deviation of our 16 values is 3,0 x I0-9. Any com-
parison between uncertain values is open to criticism, and all that can be said is that
the accuracy of GEM 10B seems to deteriorate as the degree increases beyond 23 - a
conclusion which will cause no surprise. Since only two of the 24 GEM 10B coefficients

9

have numerical values exceeding 7 x 10 °, the GEM I0B values may be largely indeterminate

for degree 24-35,
Table 10

Comparison of our values with GEM 10B
for degree 24-35

9= 9=
. 107C, 15 10°S, .15
GEM 10B | Tables 6 and 8 | GEM 10B | Tables 6 and 8

24 3.1 0.4 £ 3.6 =-5.1 =22,1 £ 3,2
25 -1.6 -6,0 £ 1.8 -10.2 1.1 = 2.1
26 4.6 -14,3 £ 5,5 1.2 14,3 £ 5.3
27 0.6 -4,6 £ 1.3 -1.1 9.8 ¢+ 2,4
28 -6,.8 ~15.2 £ 6,3 -1.9 -8.4 * 6,3
29 =7.0 -6.9 ¢ j.4 | =6.1 -4,0 £ 1,4
30 -5.7 -3,1 £ 6.7 -0.4 -15,7 £ 6.2
31 -0.3 18,4 *+ 2,4 2.3 .=4,9 * 3.4
32 1.4 9.2 £ 5.9 =-2.5 3.0 £ 5.0
33 1.0 -1.1 ¢+ 2,8 3.3 -12.4 * 3,6
34 1.9 10,4 £ 5.8 0.6 5.3 * 4.9
35 -13.7 -10.5 ¢ 4.0 2.7 4,2 £ 4.4

Fig 3 to 5 offer graphical comparisons of GEM 10B (broken lines) with our solutions
(full lines). Fig 3 shows good agreement, Thus the 15th-order coefficients of odd
degree in GEM 10B, taken as a whole, provide good values of lumped harmonics over the
vhole range of inclination, even though the individual coefficients are ill defined for
high degree. 1In Figs 4 and 5 the agreement between GEM 10B and our graphs is not quite
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so good, but the form of the curves is similar for both solutions, apart from a divergence

with §l;
GEM 10B therefore provides reasonably realistic values for lumped 15th-order harmonics

. . . . o
on Fig 5 at inclinations less than 48 . For the even-degree values, too,

over quite a wide range of inclinations, whatever the deficiencies in the values of the

individual harmonics.

This direct comparison of actual values gives a more favourable impression of the

accuracy of GEM 10B than the statistical tests applied by Lambeck and Colemanl7.

9 THE 30TH-ORDER EQUATIONS AND THEIR SOLUTIONS

9.1 The equations available

Of the 24 orbits analysed at 15th-order resonance, eight have given useful values
for lumped harmonics of 30th order and even degree (seven previously used, plus 1971-10B),

while only one has provided values for lumped harmonics of odd degree.

Therefore only the even-degree coefficients can be evaluated, and for these the

lumped harmonics are of the form

0,2

- 0
¢ 3

0,2=
30 C30,30 * @

C

32,30 * Q4 C34,30 * o0 (18)

2w
»

2 C
with the same equations for S on replacing C by S cthroughout. To these equations

we add constraint equations of the form

- -5,2

C£,30 = 010 /2% , (19)
and similarly for S , for ¢ = 30, 32, 34, ... up to the highest £ evaluated. Thus, in
solving for N even-degree 30th-order harmonics, we have 8 + N equations for C and

also for S .
_0,2 _0,2
The values of Cq,5 and S,;3 obtained from the eight satellites are given in

Table |1, together with values of F FC and FS , which give a better idea of

30,30,14 °
the relative contributions of the 30th-order terms in equation (7), where the factor

1 . . .
2(R/a) 3 has a numerical value of approximately 0.6. Table 12 lists the Q coefficients.
Table 11

Values of even-degree lumped harmonics (E,§)262 for the eight satellites

. 60:2 5,052 . o 0.2 o 0,2
Satellite | o0y | 107Cy 1 19783 F10,30,14 | '9F30,30,14%30 | "9 F30,30,14530
1974-36A | 50.64 | 597 ¢ ss8 | 679 651 | 0.000952 0.57 = 0.53 0.65 ¢ 0.62
1963-248 | $8.20 | 46 + 106 | 253 88 | 0.01176 0.54 & 1.25 2.98 ¢ 1.0
1971-1C8 | 65.83 | =54 ¢ 27 s9 t40 | 0.07292 -3.94 & 1,97 4.30 ¢ 2,92
1970=111A | 74.00 | 19.2 2 4.9 | 4.1 % 4.4 | 0.2579 46.95 & 1.26 1,06 ¢ 1,13
1971-138 | 74.05 | 27,1 + 11.0¢] 6.0 £3.3 | 0.259 7.03 + 285 1.56 ¢ 0.86
1967424 | 80.17 [ =9.1 £ 9.2¢ | -5.0 2 11.0%| 0.4340 -3.95 £ 3.99 “2.17 £ 4,77
1971-56A | 90.21 | =9.81 £ 0,58 | 9.00 £ 0.75 | 0.4755 4,66 & 0.28 4.28 ¢ 0.36
1964=528 | 98.68 | 22,8 & 7.9 | 38.0 2 41.2¢| 0.2502 5.70 3 1.98 9.51 ¢ 10,31

* gstandard deviation x 2

2 acendard dowipgeioen 2 £ . 4




84021

Table 12

Values of Qgiz, ngz, cees Qgiz for the eight satellites

. 0,2 0,2 0,2 0,2 0,2 0,2
Satellite | Q3 | Qy U 8 %o U2
1974=344A -11.9 52.9 -131.8 200.3 -171.,5 34,5
1963=24B -7.61 19.01 -20.11 2.71 11.18 -2.92
1971-10B -3.971 3.166 1.636 -1.323 -1.607 -0.149
1970=1114A -1,121 | =-0.806 -0,128 0.319 0.433 0.314
1971-13B -1.107 | -0,.807 -0.140 0.308 0.429 0.317
1967=42A 0.155| =0.161 -0.281 -0.295 -0,252 | -0,184
1971=54A 0.430 0.213 0.100 0.036 -0.000 | -0.020
1964~52B -1.113 | =0,.847 -0,281 0.127 0.313 0.333

9.2 Solutions for individual harmonic coefficients of 30th order and even degree

When the 8 + N equations were solved for N coefficients, with 2 <N <6, the

values of € were as follows:

N 2 3 4 5 6

C equations | 1,75 | 1,38} 0,98 | 0.96 | 0.87
S equations | 1,35 | 0,71 | 0,70 | 0.70 | 0.69

The best value of N is not at all clear from these results, For the S equations
it is enough to take N = 3, giving harmonics up to £ = 34, but only because the coef=-
ficients for 2 = 36, 38 and 40 are small (all being less than half their standard
deviation, as the solutions show). 4 priori, however, it would be expected that six
harmonics, up to £ = 40, should be evaluated, because Table 12 shows that the largest
Q coefficients for 1974=34A are Q38 and an . For the C equations there is an
advantage in increasing N from 4 to 6, since et decreases by !1%. A value of N
higher than 6 cannot be accepted, because there are only seven satellites distinct in

inclination,

In these circumstances it seems appropriate to give two solutions, for N = 6 and
for a lower value. This lower value is chosen as N = 4, because the C equations are
fitted much better at N = 4 than at N = 3, These two solutions are given in Table 13,
with the GEM 10B values (which cease at 2 = 36). The standard deviations of the new
6-harmonic solution are on average 297 lower than in our previous solution, so the inclu-
sion of 1971-10B has brought about a great improvement. Previously, only the values of
the % = 30 coefficients could be regarded as well defined. In the new solution the
values for ¢ = 30, 32 and 34 seem reliable, with good consistency between the 4-harmonic
and 6-harmonic solutions.

_



Table 13

Values of czl;o and 51’30
6= and 4-harmonic solutions, and by GEM 10B

of even degree given by our

% 10%5
. 10 Cz’30 52,30

6~harmonic | 4-harmonic | GEM 10B || 6-harmonic | 4-harmonic GEM 10B

30 -3.4 ¢ 1,1{ =-2.6 £ 1.0 -5.2 8.3 +0.9 8.6 £+ 0,6 1.1
32 -7.9 £ 2,4| -8.3 2.7 =0.6 =2.9 £ 2,2 | =3.3 ¢ 2.1 -0.2
3% | -11.8 2,9 -12.8 £3,2] ~11.9 9.0 £ 2,6 8.8 £ 2,5 1.2
36 -6.4 * 3,9 -8.9 + 3.2 =3.9 -0.6 £ 3,3 | -1.3 2.6 =-0.9
38 5.0 £ 3.9 1.5 £ 3.2
40 4.4 + 3,2 1.3 £ 2.7

Table 14 gives the weighted residuals in the 6~harmonic solution relative to the
standard deviations in Table 11, four of which are increased to ensure that the weighted
residuals do not exceed |.4,

Table 14

Weighted residuals in the 14 equations used in evaluating
the 6-harmonic solution for 30th order and even degree

Satellite equations ﬂ Constraint equations

Satellite 6282 §:;2 Deﬁfee 52’30 4§£’30
1974=34A 0.05 0.02 30 0.31 | =0.75
1963-24B 0.20 0.24 32 0.80 0.30
1971-10B | ~0.75 0.40 34 1.35 | -1.03
1970-111A | 0.00 | -0.30 36 0.84 0.08
1971-13B 0.73 0.20 38 =0.73 | -0.21
1967-42A | ~0.61 | -0.98 40 -0.71 | =-0.2]

1971-54A [ ~0.04 0.10
1964~52B 0.47 0.81

_ 0,2 - _0,2
The values of F30’30’IAC30 and F30,30,|433o are plotted against inclination

in Fig 6 with the variations given by our 6~harmonic solution (unbroken lines) and our

4-harmonic solutica (dot=-dash lines). With the S-coefficients there is nothing to choose

between the two fittings, but for the C-coefficients the 6-harmonic solution gives a

noticeably better fit and is also less extreme in its variations.

9.3 Comparison with comprehensive geopotential models

The GEM 10B values can appropriately be compared with our 4-harmonic solution, and
the agreement is surprisingly good. The mean numerical difference between the eight GEM !

values and the corresponding values in our solution is 3,7 x 10-9. Since the mean

M




2.2 x 1070

, it is possible that the 30th-order

harmonics of even degree in GEM 10B may have errors as low as 3 x 10-9.

standard deviation of our values is

In Fig 6 the variations of the lumped harmonics from our solutions are compared
with the variation given by GEM 10B, shown by the broken lines. For the C-coefficients
the GEM 10B curve is of the same form as our solution, and all our eight values are
fitted to within 2.8 standard deviations. For the S-coefficients the agreement is not so
good but the values are fairly small and are again fitted to within 2.8 standard

deviations, All in all, GEM 10B emerges well from the comparisons.

For the 30th-order harmonics, GRIM 3 is independent of our values, and Rappla uses

only our previous (30,30) coefficient. So comparisons are legitimate, and ia Table 15
our 4-harmonic solution is set beside GRIM 3 and our 6-harmonic solution beside Rapp's
model.

Table 15

Values of even-degree 30th-order coefficients given by our 4-harmonic solutionm,
15

GRIM 3, our 6-harmonic solution and Rapp

84021

. 'ogczl;o '0951,30

4=harm, | GRIM 3 | 6-harm.| Rapp 4=harm, GRIM 3 | 6-harm. Rapp
30 -2.6 -2.7 =3.4 | (=3.3) 8.6 2.9 8.3 (7.5)
32 -8.3 -2.1 -7.9 -6.7 -3.3 -2.6 -2.9 0.5
34 -12.8 -26.2. -11.8 | -22.9 8.8 =7.7 9.0 -0.6
36 -8.9 -11.4 -6.4 -6.0 ~1.3 1.9 -0.6 4.8
38 5.0 0.5 1.5 2.5
40 4.6 1.2 1.3 -1.3

difference between the ten independent Rapp values and ours is 4.2 x 1077,

is not so good.

modells.

10 DISCUSSION

10,1

The 15th-order harmonics

9

The mean difference between the eight GRIM values and ours is 5.8 x 10-9, while the mean
Thus Rapp's

model agrees with our values almost as well as GEM 10B, while for GRIM 3 the agreement

Our previous evaluation of 15th order harmonicsl had one unsatisfactory feature:

However, the mean difference is less, 4,3 x 10-9, in the recent GRIM3-L!

there was only one accurate orbit analysis for inclinations between 59° and 73°, and that

orbit (1970-87A) gave values only for odd-degree harmonics,

Furthermore the analysis

of this satellite was of questionable reliability, because it was based on an inadequate

number of orbits (23), all at times after resonance.

This deficiency in the previous data has now been put right by the addition of

1971-10B at inclination 65.9°, and the resulting coverage of the inclination range is now

DRIV SRR
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quite satisfactory (see Figs 3 to 5), although further accurate orbit analyses, particu-
larly at inclinations between 59° and 73°, would improve the accuracy and reliability of

the results.

The curves of odd-degree lumped harmonics in Fig 3 differ significantly from their
previous form at inclinations between about 60° and 70°. For the EI; coefficients, it
appears that the previously available values near 65° and 70° inclination were in error
by somewhat more than their standard deviations, and the same applies to the § coef-

ficient obtained from 1970-87A at 62.9°.

For the even-degree lumped harmonics, shown in Figs 4 and 5, the previous curves
were very poorly defined between 60° and 70° inclination, and changes were to be expected.
As it turns out, however, the new values for 1971-10B fit the old curves quite well, and

no changes of any importance occur.

The new values of the |5th-order coefficients (Tables 6 and 8) should be more
reliable than the previous set, because the gap previously existing has been filled by
1971-10B and because improved values of odd-degree lumped harmonics have been obtained
from other satellites, particularly 1977-12B, 1971=54A and 1966-63A. The standard devi-
ations of the new solutions are on average smaller than for the old, by 1% for the
odd~degree harmonics and by 5% for the even-degree harmonics. The average standard
deviation for the coefficients of degree 15, 16, 17, ..., 23 is 1.2 x 10-9, equivalent

to about ! cm in geoid height.

Figs 3 to 5 show that the Goddard Earth Model 10B provides quite realistic values
for the lumped harmonics over the whole range of inclinatioms, though it is probable that

the GEM 10B values for coefficients of degree higher than 24 are almost indeterminate.

10.2 The 30th-order harmonics

Our previous evaluation of 30th-order harmonics of even degree was a first attempt,
and the only values securely established were those of the 30th-degree coefficients.
Previously there were no results at all for inclinations between 59° and 73°, Again the
data from 1971-10B has filled this gap, and the new solution (Table 13) establishes good
values for £ = 32 and 34 as well as £ = 30, The average standard deviation for these
three pairs of coefficients is nearly 407 lower than in the previous solution, being
.0 x 10-9, equivalent to about !} cm in geoid height. Also the 4-harmonic and 6-harmonic

solutions agree well, thus suggesting that the £ = 36 values may be reliably determined.

The variations of the lumped harmonics given by the 4~ and 6-harmonic solutions
are shown in Fig 6 with values from GEM 10B for comparison. The 6-harmonic solution is
seen to be preferable for the C-coefficients; and GEM I10B agrees surprisingly well with

our solutions.
1l CONCLUSIONS

A nev set of values has been derived for the individual 15th-order harmonic coef-
ficients in the geopotential of degree 15, 16, 17, ..., 35. See Tablaes 6 and 8, These
values should be more reliable because the gap in inclination near 65° has now been

filled by the results from 1971=-10B. The new solution also has lower standard deviations,
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and for degree 15, 16, ..., 23 these correspond to an accuracy of about | cm in the

undulation in geoid height produced by |5th-order harmonics.

The analysis of 1971-10B has also provided values of lumped 30th-order harmonics at
an inclination previously quite unrepresented. In the new solution (Table [3) three
pairs of coefficients, of degree 30, 32 and 34, are evaluated with an accuracy equivalent

to !} cm in geoid height, and there is an improvement in accuracy of nearly 407.

The results have been used to test the Goddard Earth Model 10B, and the model
emerges rather well from the comparison, with an indication of errors of about 3 or
4 x 10-9 for coefficients of order 15 and degree 15-23, and also for those of order 30
and degree 30, 32, 34 and 36.
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